import time from menchuangfallback import menchuangfallback def extra( data, #data aiclient, qwclient, menchuang_collection, model): if data['bianma'].startswith("0108"): sentence=["特征描述:" + data['mc'] + "\n" + data['tz']] embeddings = model.encode(sentence) result = menchuang_collection.query(query_embeddings=embeddings, n_results=10) print(result['documents'][0]) l = len([x for x in result['distances'][0] if x < 0.5]) if l < 2: l = 2 completion = aiclient.chat.completions.create( model="glm-4.5-flash", messages=[ {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"}, {"role": "user", "content": "特征描述往往比较具体,工作内容是对特征描述的主要关键的总结提炼。以下是一些特征描述以及对应的提炼的工作内容的例子。" + '\n\n'.join(result['documents'][0][:l]) + "给定一段特征描述,内容为" + data['mc'] +data['tz'] + "。请参照示例,给出提炼的工作内容. 注意,不需要输出特征描述,仅输出工作内容"}, ], extra_body={"thinking": {"type": "disabled"}}, ) json_string = completion.choices[0].message.content print(json_string) answers = json_string.split("\n") answers = [x for x in answers if ':' in x ] answer2 = answers[0].split(":")[1].replace(" ", "") return answer2 completion = aiclient.chat.completions.create( model="glm-4.5-flash", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": " 背景知识:已知预应力高强混凝土管桩(PHC)代号定义为PHC-AAA(BB)CC-DDD-E1,E2,E3,E4,其中AAA代表管桩外径,BB代表管桩壁厚,CC表示型号,DDD表示混凝土强度等级,E1/E2/E3/E4表示分段桩长。例如,PHC-500(125)-AB-C80-9,7 表示外径500mm,壁厚125mm,型号AB,混凝土强度C80, 分段桩长分别为9米和7米,总桩长16米,施工时需要将两个分段接桩"}, {"role": "user", "content": "问题描述: 给定一段工作内容描述,内容为" + data['mc'] +data['tz'] + "。请判断内容中是否包含桩的代号,如果没有,请输出“无”,如果有,请输出代号"}, ], extra_body={"thinking": {"type": "disabled"}}, ) json_string = completion.choices[0].message.content completion = aiclient.chat.completions.create( model="glm-4.5-flash", messages=[ {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"}, {"role": "user", "content": " 给你一段文字如下, " + json_string + ",其中给出了一个代号作为答案,请将该最终答案输出"}, ], extra_body={"thinking": {"type": "disabled"}}, ) json_string = completion.choices[0].message.content answers = json_string.split("\n") answers = [x for x in answers if ':' in x ] answers = [x for x in answers if not 'true' in x] answers = [x for x in answers if not '是' in x] print(answers) if len(answers) == 0: return "无" answer2 = answers[0].split(":")[1].replace(" ", "") return answer2 def need_extra( data, #data aiclient, qwclient, result): if data['bianma'].startswith("0108") and len(result) == 0: return True time.sleep(1) completion = qwclient.chat.completions.create( model="ZhipuAI/GLM-4.6", #model="glm-4.5-flash", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "问题描述: 给定一段工作内容描述,内容为" + data['mc'] +data['tz'] + "。请判断内容是否属于打桩、压桩。请回答是或者否"}, ], extra_body={"thinking": {"type": "disabled"}}, ) json_string = completion.choices[0].message.content print(json_string) if "是" in json_string: return True else: return False