import time import json with open('zhaoping_rule', 'r') as f: content = f.read() import json obj=json.loads(content) with open('name_label', 'r') as f: content = f.read() import json name_label=json.loads(content) baohuceng = ['10-74', '10-75', '10-77', '10-78', '10-80', '10-81', '10-83', '10-84', '10-86', '10-87', '10-90'] from fallback import fallback def aifilter3(A, #options B, #data aiclient, qwclient, sfclient, dw): options=[] letters = "ABCDEFGHIJKLMN" for i in range(len(A)): options.append("给定选项" + letters[i]+",内容为"+A[i] ) completion = sfclient.chat.completions.create( model="THUDM/GLM-4-9B-0414", #model="glm-4.5-flash", #model="Qwen/Qwen3-8B", #model="ernie-speed-128k", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "问题描述: 细石混凝土内配钢丝网片是一种常见的施工工艺。给定一段工作内容: " + B['label'] + " " + B['mc'] + " " + B['tz'] + "。请问工作内容的描述中有该施工工艺吗?请回答有或者没有"}, ], extra_body={"thinking": {"type": "disabled"}}, #extra_body={"enable_thinking": True}, #stream=True ) json_string = completion.choices[0].message.content print(json_string) if len(json_string) < 4: if '没有' in json_string: return False return True completion = sfclient.chat.completions.create( #model="glm-4.5-flash", model="THUDM/GLM-4-9B-0414", messages=[ {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"}, {"role": "user", "content": " 给你一段文字如下, " + json_string + ",其中给出了一个有或者没有的判断,请将该判断输出"}, ], extra_body={"thinking": {"type": "disabled"}}, #extra_body={"enable_thinking": False}, ) json_string = completion.choices[0].message.content print(json_string) if '没有' in json_string: return False return True def aifilter4(A, #options B, #data aiclient, qwclient, dw): options=[] letters = "ABCDEFGHIJKLMN" for i in range(len(A)): options.append("给定选项" + letters[i]+",内容为"+A[i] ) completion = qwclient.chat.completions.create( #model="glm-z1-flash", model="Qwen/Qwen3-14B", #model="ernie-speed-128k", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": " 背景知识:混凝土(砼)整体面层跟混凝土找平层是不同的施工步骤,不得混淆"}, {"role": "user", "content": " 背景知识:混凝土(砼)整体面层跟混凝土垫层是不同的施工步骤,不得混淆"}, {"role": "user", "content": " 背景知识:混凝土(砼)找平层跟混凝土垫层是不同的施工步骤,不得混淆"}, {"role": "user", "content": " 背景知识:水泥砂浆找平层跟水泥砂浆面层是不同的施工步骤,不得混淆"}, {"role": "user", "content": " 背景知识:水泥砂浆找平层跟水泥砂浆保护层是不同的施工步骤,不得混淆"}, {"role": "user", "content": " 背景知识:“混凝土楼地面”施工是面层施工,跟“楼地面涂刷一遍901胶素水泥浆”是不同的施工步骤,不得混淆"}, {"role": "user", "content": " 特殊处理要求:如果工作内容描述中明确提到块料面层,比如地砖、石材块料等,则保留楼地面涂刷一遍901胶素水泥浆选项,去掉所有混凝土(砼)整体面层的选项"}, {"role": "user", "content": " 重要提示:选项指的是给定的A、B、C之类的选项,不是指的工作内容中的可能的1、2、3这样罗列的特征"}, {"role": "user", "content": " 重要提示:除特殊处理要求提及的内容外,不需考虑选项内容与工作内容是否符合,只需要根据特殊处理要求做出处理"}, {"role": "user", "content": "问题描述: 给定一段工作内容: " + B['label'] + " " + B['mc'] + " " + B['tz'] + ",".join(options) + "。请根据处理要求做出处理,并返回结果。例如,如果处理完后剩余A,B,C三个选项,请返回[A,B,C]"}, ], #extra_body={"thinking": {"type": "enabled"}}, extra_body={"enable_thinking": True}, stream=True ) done_thinking = False json_string="" thinking_json_string="" for chunk in completion: thinking_chunk = chunk.choices[0].delta.reasoning_content answer_chunk = chunk.choices[0].delta.content if thinking_chunk != '': thinking_json_string = thinking_json_string + thinking_chunk elif answer_chunk != '': if not done_thinking: done_thinking = True json_string = json_string + answer_chunk #json_string = completion.choices[0].message.content print(thinking_json_string) print(json_string) if len([x for x in json_string if x != ',' and x != '[' and x != ']' and x != ' ' and (x < 'A' or x > 'M')]) < 5: answer=[] if 'A' in json_string and len(A) > 0: answer.append(A[0]) if 'B' in json_string and len(A) > 1: answer.append(A[1]) if 'C' in json_string and len(A) > 2: answer.append(A[2]) if 'D' in json_string and len(A) > 3: answer.append(A[3]) if 'E' in json_string and len(A) > 4: answer.append(A[4]) if 'F' in json_string and len(A) > 5: answer.append(A[5]) if 'G' in json_string and len(A) > 6: answer.append(A[6]) if 'H' in json_string and len(A) > 7: answer.append(A[7]) if 'I' in json_string and len(A) > 8: answer.append(A[8]) if 'J' in json_string and len(A) > 9: answer.append(A[9]) return answer completion = qwclient.chat.completions.create( model="ZhipuAI/GLM-4.5", #model="glm-4.5-flash", messages=[ {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"}, {"role": "user", "content": " 给你一段文字如下, " + json_string + ",其中给出了一个类似于[A,B]的数组作为结果,请将该最终结果输出"}, ], extra_body={"thinking": {"type": "disabled"}}, #extra_body={"enable_thinking": False}, ) json_string = completion.choices[0].message.content print(json_string) answer=[] if 'A' in json_string and len(A) > 0: answer.append(A[0]) if 'B' in json_string and len(A) > 1: answer.append(A[1]) if 'C' in json_string and len(A) > 2: answer.append(A[2]) if 'D' in json_string and len(A) > 3: answer.append(A[3]) if 'E' in json_string and len(A) > 4: answer.append(A[4]) if 'F' in json_string and len(A) > 5: answer.append(A[5]) if 'G' in json_string and len(A) > 6: answer.append(A[6]) if 'H' in json_string and len(A) > 7: answer.append(A[7]) if 'I' in json_string and len(A) > 8: answer.append(A[8]) if 'J' in json_string and len(A) > 9: answer.append(A[9]) return answer def aifilter1(A, #options B, #data aiclient, qwclient, dw): options=[] letters = "ABCDEFGHIJKLMN" for i in range(len(A)): options.append("给定选项" + letters[i]+",内容为"+A[i] ) completion = qwclient.chat.completions.create( #model="glm-z1-flash", model="Qwen/Qwen3-14B", #model="ernie-speed-128k", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": " 背景知识:混凝土楼地面是面层,跟混凝土垫层是不同的施工步骤,不得混淆"}, {"role": "user", "content": " 背景知识:混凝土(砼)整体面层跟混凝土找平层是不同的施工步骤,不得混淆"}, {"role": "user", "content": " 背景知识:混凝土(砼)整体面层跟混凝土垫层是不同的施工步骤,不得混淆"}, {"role": "user", "content": " 背景知识:混凝土(砼)找平层跟混凝土垫层是不同的施工步骤,不得混淆"}, {"role": "user", "content": " 背景知识:水泥砂浆找平层跟水泥砂浆面层是不同的施工步骤,不得混淆"}, {"role": "user", "content": " 背景知识:水泥砂浆找平层跟水泥砂浆保护层是不同的施工步骤,不得混淆"}, {"role": "user", "content": " 特殊处理要求:如果工作内容描述中没有明确提到踢脚线,则去掉所有踢脚线的选项"}, {"role": "user", "content": " 特殊处理要求:去掉所有模板工程的选项"}, {"role": "user", "content": " 特殊处理要求:如果工作内容描述中没有明确涉及水泥砂浆面层,且没有提及水泥砂浆保护层,则去掉所有20mm水泥砂浆楼地面的选项"}, {"role": "user", "content": " 特殊处理要求:如果工作内容描述中没有明确提到素水泥浆,则去掉所有含有“素水泥浆”字样的选项"}, {"role": "user", "content": " 特殊处理要求:如果工作内容描述中没有明确提到“加浆抹光”,则去掉所有含有“加浆抹光”字样的选项"}, {"role": "user", "content": " 特殊处理要求:如果工作内容描述中没有明确提到混凝土垫层,则去掉所有混凝土垫层的选项"}, {"role": "user", "content": " 特殊处理要求:如果选项中同时存在“冷轧带肋钢筋”选项和“抗裂基层 热镀锌钢丝网”选项,则去掉热镀锌钢丝网的选项"}, {"role": "user", "content": " 重要提示:选项指的是给定的A、B、C之类的选项,不是指的工作内容中的可能的1、2、3这样罗列的特征"}, {"role": "user", "content": " 重要提示:除特殊处理要求提及的内容外,不需考虑选项内容与工作内容是否符合,只需要根据特殊处理要求做出处理"}, {"role": "user", "content": "问题描述: 给定一段工作内容: " + B['label'] + " " + B['mc'] + " " + B['tz'] + ",".join(options) + "。请根据处理要求做出处理,并返回结果。例如,如果处理完后剩余A,B,C三个选项,请返回[A,B,C]"}, ], #extra_body={"thinking": {"type": "enabled"}}, extra_body={"enable_thinking": True}, stream=True ) done_thinking = False json_string="" thinking_json_string="" for chunk in completion: thinking_chunk = chunk.choices[0].delta.reasoning_content answer_chunk = chunk.choices[0].delta.content if thinking_chunk != '': thinking_json_string = thinking_json_string + thinking_chunk elif answer_chunk != '': if not done_thinking: done_thinking = True json_string = json_string + answer_chunk #json_string = completion.choices[0].message.content print(thinking_json_string) print(json_string) if len([x for x in json_string if x != ',' and x != '[' and x != ']' and x != ' ' and (x < 'A' or x > 'M')]) < 5: answer=[] if 'A' in json_string and len(A) > 0: answer.append(A[0]) if 'B' in json_string and len(A) > 1: answer.append(A[1]) if 'C' in json_string and len(A) > 2: answer.append(A[2]) if 'D' in json_string and len(A) > 3: answer.append(A[3]) if 'E' in json_string and len(A) > 4: answer.append(A[4]) if 'F' in json_string and len(A) > 5: answer.append(A[5]) if 'G' in json_string and len(A) > 6: answer.append(A[6]) if 'H' in json_string and len(A) > 7: answer.append(A[7]) if 'I' in json_string and len(A) > 8: answer.append(A[8]) if 'J' in json_string and len(A) > 9: answer.append(A[9]) return answer completion = qwclient.chat.completions.create( #model="glm-4.5-flash", model="ZhipuAI/GLM-4.5", messages=[ {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"}, {"role": "user", "content": " 给你一段文字如下, " + json_string + ",其中给出了一个类似于[A,B]的数组作为结果,请将该最终结果输出"}, ], extra_body={"thinking": {"type": "disabled"}}, #extra_body={"enable_thinking": False}, ) json_string = completion.choices[0].message.content print(json_string) answer=[] if 'A' in json_string and len(A) > 0: answer.append(A[0]) if 'B' in json_string and len(A) > 1: answer.append(A[1]) if 'C' in json_string and len(A) > 2: answer.append(A[2]) if 'D' in json_string and len(A) > 3: answer.append(A[3]) if 'E' in json_string and len(A) > 4: answer.append(A[4]) if 'F' in json_string and len(A) > 5: answer.append(A[5]) if 'G' in json_string and len(A) > 6: answer.append(A[6]) if 'H' in json_string and len(A) > 7: answer.append(A[7]) if 'I' in json_string and len(A) > 8: answer.append(A[8]) if 'J' in json_string and len(A) > 9: answer.append(A[9]) return answer def aifilter2(A, #options B, #data aiclient, qwclient, dw): hit_wumian = False for entry in A: if entry in obj['wumian']: hit_wumian=True hit_loumian = False loumian_entry = '' for entry in A: if entry in obj['loumian']: hit_loumian=True loumian_entry = entry if hit_wumian and hit_loumian: return [x for x in A if x != loumian_entry] return A def postprocess0111(selected, data, aiclient, qwclient, sfclient, label_name, name_dw): prime = aifilter1(selected, data, aiclient, qwclient, name_dw) time.sleep(1) wangpian = aifilter3(prime, data, aiclient, qwclient, sfclient, name_dw) if not wangpian: prime = aifilter4(prime, data, aiclient, qwclient, name_dw) if '界面剂' in data['tz']:##保温 if len([ x for x in prime if '第十四章 墙柱面工程 14.1 一般抹灰 14.1.3 保温砂浆及抗裂基层 刷界面剂' in x]) == 0: prime.append('第十四章 墙柱面工程 14.1 一般抹灰 14.1.3 保温砂浆及抗裂基层 刷界面剂 混凝土面') ##需要换 return prime