import json from config import simplemodel from template import xuanxiang with open('zhaoping_rule', 'r') as f: content = f.read() import json obj=json.loads(content) with open('name_label', 'r') as f: content = f.read() import json name_label=json.loads(content) baohuceng = ['10-74', '10-75', '10-77', '10-78', '10-80', '10-81', '10-83', '10-84', '10-86', '10-87', '10-90'] from fallback import fallback def aifilter4(A, #options B, #data aiclient, qwclient, sfclient, dw): options=[] letters = "ABCDEFGHIJKLMN" for i in range(len(A)): options.append("给定选项" + letters[i]+",内容为"+A[i] ) completion = aiclient.chat.completions.create( model="glm-4.5-flash", #model="Qwen/Qwen3-8B", #model="ernie-speed-128k", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": " 背景知识:土建施工中,保温做法有很多种,包括保温砖,保温瓦,保温砂浆,保温板等。保温板有不同材料,比如聚苯乙烯泡沫板,聚苯乙烯挤塑板,聚氨酯保温板,玻璃棉板,矿棉板等"}, {"role": "user", "content": "问题描述:" + ",".join(options) + "。请问选项中是否有保温板的选项?请回答是或者否"}, ], extra_body={"thinking": {"type": "disabled"}}, #extra_body={"enable_thinking": True}, #stream=True ) ##done_thinking = False ##json_string="" ##thinking_json_string="" ##for chunk in completion: ## thinking_chunk = chunk.choices[0].delta.reasoning_content ## answer_chunk = chunk.choices[0].delta.content ## if thinking_chunk != '': ## thinking_json_string = thinking_json_string + thinking_chunk ## elif answer_chunk != '': ## if not done_thinking: ## done_thinking = True ## json_string = json_string + answer_chunk json_string = completion.choices[0].message.content #print(thinking_json_string) print(json_string) if len(json_string) < 4: if '否' in json_string: return False return True completion = sfclient.chat.completions.create( model=simplemodel(), messages=[ {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"}, {"role": "user", "content": " 给你一段文字如下, " + json_string + ",其中给出了一个是或者否的判断,请将该中文判断输出"}, ], extra_body={"thinking": {"type": "disabled"}}, #extra_body={"enable_thinking": False}, ) json_string = completion.choices[0].message.content print(json_string) if '否' in json_string: return False return True def aifilter3(A, #options B, #data aiclient, qwclient, sfclient, dw): options=[] letters = "ABCDEFGHIJKLMN" for i in range(len(A)): options.append("给定选项" + letters[i]+",内容为"+A[i] ) completion = aiclient.chat.completions.create( model="glm-4.5-flash", #model="Qwen/Qwen3-8B", #model="ernie-speed-128k", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": " 背景知识:土建施工中,保温做法有很多种,包括保温砖,保温瓦,保温砂浆,保温板等。保温板有不同材料,比如聚苯乙烯泡沫板,聚苯乙烯挤塑板,聚氨酯保温板, 岩棉保温板等"}, {"role": "user", "content": "问题描述: 给定一段工作内容: " + B['label'] + " " + B['mc'] + " " + B['tz'] + "。请问工作内容的描述中有涉及保温板吗?请回答是或者否"}, ], extra_body={"thinking": {"type": "disabled"}}, #extra_body={"enable_thinking": True}, #stream=True ) #done_thinking = False #json_string="" #thinking_json_string="" #for chunk in completion: # thinking_chunk = chunk.choices[0].delta.reasoning_content # answer_chunk = chunk.choices[0].delta.content # if thinking_chunk != '': # thinking_json_string = thinking_json_string + thinking_chunk # elif answer_chunk != '': # if not done_thinking: # done_thinking = True # json_string = json_string + answer_chunk json_string = completion.choices[0].message.content #print(thinking_json_string) print(json_string) if len(json_string) < 4: if '否' in json_string: return False return True completion = sfclient.chat.completions.create( model=simplemodel(), messages=[ {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"}, {"role": "user", "content": " 给你一段文字如下, " + json_string + ",其中给出了一个是或者否的判断,请将该中文判断输出"}, ], extra_body={"thinking": {"type": "disabled"}}, #extra_body={"enable_thinking": False}, ) json_string = completion.choices[0].message.content print(json_string) if '否' in json_string: return False return True def aifilter1(A, #options B, #data aiclient, qwclient, sfclient, dw): options=[] letters = "ABCDEFGHIJKLMN" for i in range(len(A)): options.append("给定选项" + letters[i]+",内容为"+A[i] ) completion = aiclient.chat.completions.create( model="glm-4.5-flash", #model="Qwen/Qwen3-8B", #model="ernie-speed-128k", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": " 特殊处理要求:如果工作内容描述中没有明确提到素水泥浆,则去掉所有含有“素水泥浆”字样的选项"}, {"role": "user", "content": " 重要提示:选项指的是给定的A、B、C之类的选项,不是指的工作内容中的可能的1、2、3这样罗列的特征"}, {"role": "user", "content": " 重要提示:除特殊处理要求提及的内容外,不需考虑选项内容与工作内容是否符合,只需要根据特殊处理要求做出处理"}, {"role": "user", "content": "问题描述: 给定一段工作内容: " + B['label'] + " " + B['mc'] + " " + B['tz'] + ",".join(options) + "。请根据处理要求做出处理,并返回结果,删除选项必须对应到明确的特殊处理要求,不要擅自删除选项。例如,如果处理完后剩余A,B,C三个选项,请返回[A,B,C]"}, ], extra_body={"thinking": {"type": "disabled"}}, #extra_body={"enable_thinking": True}, #stream=True ) #done_thinking = False #json_string="" #thinking_json_string="" #for chunk in completion: # thinking_chunk = chunk.choices[0].delta.reasoning_content # answer_chunk = chunk.choices[0].delta.content # if thinking_chunk != '': # thinking_json_string = thinking_json_string + thinking_chunk # elif answer_chunk != '': # if not done_thinking: # done_thinking = True # json_string = json_string + answer_chunk json_string = completion.choices[0].message.content #print(thinking_json_string) print(json_string) if len([x for x in json_string if x != ',' and x != '[' and x != ']' and x != ' ' and (x < 'A' or x > 'M')]) < 5: answer=[] if 'A' in json_string and len(A) > 0: answer.append(A[0]) if 'B' in json_string and len(A) > 1: answer.append(A[1]) if 'C' in json_string and len(A) > 2: answer.append(A[2]) if 'D' in json_string and len(A) > 3: answer.append(A[3]) if 'E' in json_string and len(A) > 4: answer.append(A[4]) if 'F' in json_string and len(A) > 5: answer.append(A[5]) if 'G' in json_string and len(A) > 6: answer.append(A[6]) if 'H' in json_string and len(A) > 7: answer.append(A[7]) if 'I' in json_string and len(A) > 8: answer.append(A[8]) if 'J' in json_string and len(A) > 9: answer.append(A[9]) return answer completion = sfclient.chat.completions.create( model=simplemodel(), messages=xuanxiang(json_string), extra_body={"thinking": {"type": "disabled"}}, #extra_body={"enable_thinking": False}, ) json_string = completion.choices[0].message.content print(json_string) answer=[] if 'A' in json_string and len(A) > 0: answer.append(A[0]) if 'B' in json_string and len(A) > 1: answer.append(A[1]) if 'C' in json_string and len(A) > 2: answer.append(A[2]) if 'D' in json_string and len(A) > 3: answer.append(A[3]) if 'E' in json_string and len(A) > 4: answer.append(A[4]) if 'F' in json_string and len(A) > 5: answer.append(A[5]) if 'G' in json_string and len(A) > 6: answer.append(A[6]) if 'H' in json_string and len(A) > 7: answer.append(A[7]) if 'I' in json_string and len(A) > 8: answer.append(A[8]) if 'J' in json_string and len(A) > 9: answer.append(A[9]) return answer def aifilter2(A, #options B, #data aiclient, qwclient, sfclient, dw): hit_wumian = False for entry in A: if entry in obj['wumian']: hit_wumian=True hit_loumian = False loumian_entry = '' for entry in A: if entry in obj['loumian']: hit_loumian=True loumian_entry = entry if hit_wumian and hit_loumian: return [x for x in A if x != loumian_entry] return A def postprocess0110(selected, data, aiclient, qwclient, sfclient, label_name, name_dw): ban = aifilter3(selected, data, aiclient, qwclient, sfclient, name_dw) if ban: ban2 = aifilter4(selected, data, aiclient, qwclient, sfclient, name_dw) if not ban2 and len([x for x in selected if '矿棉' in x or '超细玻璃棉' in x])==0: if '墙面' in data['mc']: selected.append('第十一章 保温、隔热、防腐工程 11.1 保温、隔热工程 11.1.2 墙、柱、天棚及其它 外墙外保温 聚苯乙烯挤塑板 厚度25mm 混凝土墙面') else: selected.append('第十一章 保温、隔热、防腐工程 11.1 保温、隔热工程 11.1.1 屋、楼地面 屋面、楼地面保温隔热 聚苯乙烯挤塑板(厚25mm)') selected = list(set(selected)) prime = aifilter1(selected, data, aiclient, qwclient, sfclient, name_dw) if '界面剂' in data['tz']:##保温 if len([x for x in prime if '第十四章 墙柱面工程 14.1 一般抹灰 14.1.3 保温砂浆及抗裂基层 刷界面剂' in x]) == 0: prime.append('第十四章 墙柱面工程 14.1 一般抹灰 14.1.3 保温砂浆及抗裂基层 刷界面剂 混凝土面') ##需要换 if '玻纤网' in data['tz']:##保温 if '第十四章 墙柱面工程 14.1 一般抹灰 14.1.3 保温砂浆及抗裂基层 墙面耐碱玻纤网格布 一层' not in prime: prime.append('第十四章 墙柱面工程 14.1 一般抹灰 14.1.3 保温砂浆及抗裂基层 墙面耐碱玻纤网格布 一层') ##需要换 return prime