| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454 |
- import json
- from config import simplemodel
- from template import xuanxiang
- with open('zhaoping_rule', 'r') as f:
- content = f.read()
- import json
- obj=json.loads(content)
- with open('name_label', 'r') as f:
- content = f.read()
- import json
- name_label=json.loads(content)
- baohuceng = ['10-74', '10-75', '10-77', '10-78', '10-80', '10-81', '10-83', '10-84', '10-86', '10-87', '10-90']
- from fallback import fallback
- def shuangceng(data,aiclient,sfclient):
-
- completion = aiclient.chat.completions.create(
- model='glm-4.5-air',
- messages=[
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": " 在屋面卷材施工中,卷材可做一层(一道),可做两层(两道)。给你一段文字如下, " + data['tz'] + ",其中提及卷材施工,请问其中明确提及做两层(两道)吗?请回答是或者否"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- #extra_body={"enable_thinking": False},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- if len(json_string) < 4:
- if '否' in json_string:
- return False
- return True
-
- completion = sfclient.chat.completions.create(
- model=simplemodel(),
- messages=[
- {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"},
- {"role": "user", "content": " 给你一段文字如下, " + json_string + ",其中给出了一个是否施工两层卷材的判断,请将该判断输出,请输出是或者否"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- #extra_body={"enable_thinking": False},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- if '否' in json_string:
- return False
- return True
- def zhaopingceng(data,aiclient,sfclient):
-
- completion = aiclient.chat.completions.create(
- model='glm-4.5-air',
- messages=[
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": " 在屋面防水施工中,细石混凝土可能做找平(找坡)层,也可能做面层(保护层)。给你一段文字如下, " + data['tz'] + ",其中提及细石混凝土,请问其中提及细石混凝土是做找平(找坡)层吗?请回答是或者否"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- #extra_body={"enable_thinking": False},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- if len(json_string) < 4:
- if '否' in json_string:
- return False
- return True
-
- completion = sfclient.chat.completions.create(
- model=simplemodel(),
- messages=[
- {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"},
- {"role": "user", "content": " 给你一段文字如下, " + json_string + ",其中给出了一个是否为细石混凝土找平层的判断,请将该判断输出,请输出是或者否"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- #extra_body={"enable_thinking": False},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- if '否' in json_string:
- return False
- return True
- def aifilter3(A, #options
- B, #data
- aiclient,
- qwclient,
- sfclient,
- dw):
- options=[]
- letters = "ABCDEFGHIJK"
- for i in range(len(baohuceng)):
- options.append("给定选项" + letters[i]+",内容为"+name_label[baohuceng[i]] )
- completion = aiclient.chat.completions.create(
- model="glm-4.5-flash",
- #model="Qwen/Qwen3-14B",
- messages=[
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": " 重要提示:匹配保护层做法时,优先考虑材料的匹配性,比如,特征中描述是水泥砂浆,则优先选择水泥砂浆选项而不是防水砂浆选项"},
- {"role": "user", "content": "问题描述: 给定一段工作内容: " + B['label'] + " " + B['mc'] + " " + B['tz'] + ",其中包含了屋面保护层的做法。".join(options) + "。请根据工作内容中保护层的描述,选择最匹配的选项并返回结果。例如,如果C选项最匹配,请返回C"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- #extra_body={"enable_thinking": False},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- completion = sfclient.chat.completions.create(
- model=simplemodel(),
- messages=[
- {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"},
- {"role": "user", "content": " 给你一段文字如下, " + json_string + ",其中给出了一个类似于A或者B的选项作为结果,请将该最终结果输出"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- #extra_body={"enable_thinking": False},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- answer=[]
- if 'A' in json_string:
- answer.append(name_label[baohuceng[0]])
- if 'B' in json_string:
- answer.append(name_label[baohuceng[1]])
- if 'C' in json_string:
- answer.append(name_label[baohuceng[2]])
- if 'D' in json_string:
- answer.append(name_label[baohuceng[3]])
- if 'E' in json_string:
- answer.append(name_label[baohuceng[4]])
- if 'F' in json_string:
- answer.append(name_label[baohuceng[5]])
- if 'G' in json_string:
- answer.append(name_label[baohuceng[6]])
- if 'H' in json_string:
- answer.append(name_label[baohuceng[7]])
- if 'I' in json_string:
- answer.append(name_label[baohuceng[8]])
- if 'J' in json_string:
- answer.append(name_label[baohuceng[9]])
- if 'K' in json_string:
- answer.append(name_label[baohuceng[10]])
- return answer
- def aifilter4(A, #options
- B, #data
- aiclient,
- qwclient,
- sfclient,
- dw):
- options=[]
- letters = "ABCDEFGHIJKLMN"
- for i in range(len(A)):
- options.append("给定选项" + letters[i]+",内容为"+A[i] )
- completion = aiclient.chat.completions.create(
- model="glm-4.5-air",
- #model="Qwen/Qwen3-14B",
- messages=[
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": " 背景知识:石油沥青,沥青马蹄脂,渗透结晶防水材料等都是防水涂料。砂浆隔离层、混凝土防水层不是防水涂料"},
- {"role": "user", "content": " 特殊处理要求:如果选项中有多个防水涂料的选项(砂浆隔离层、混凝土防水层不是防水涂料),则只能选择一个防水涂料选项,且优先选择渗透结晶防水材料;与防水涂料无关的选项全部保留"},
- {"role": "user", "content": " 重要提示:选项指的是给定的A、B、C之类的选项,不是指的工作内容中的可能的1、2、3这样罗列的特征"},
- {"role": "user", "content": " 重要提示:除特殊处理要求提及的内容外,不需考虑选项内容与工作内容是否符合,只需要根据特殊处理要求做出处理"},
- {"role": "user", "content": "问题描述: 给定一段工作内容: " + B['label'] + " " + B['mc'] + " " + B['tz'] + ",".join(options) + "。请根据处理要求做出处理,并返回结果,删除选项必须对应到明确的特殊处理要求,不要擅自删除选项。例如,如果处理完后剩余A,B,C三个选项,请返回[A,B,C]"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- #extra_body={"enable_thinking": False},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- completion = sfclient.chat.completions.create(
- model=simplemodel(),
- messages=xuanxiang(json_string),
- extra_body={"thinking": {"type": "disabled"}},
- #extra_body={"enable_thinking": False},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- answer=[]
- if 'A' in json_string:
- answer.append(A[0])
- if 'B' in json_string:
- answer.append(A[1])
- if 'C' in json_string:
- answer.append(A[2])
- if 'D' in json_string:
- answer.append(A[3])
- if 'E' in json_string:
- answer.append(A[4])
- if 'F' in json_string:
- answer.append(A[5])
- if 'G' in json_string:
- answer.append(A[6])
- if 'H' in json_string:
- answer.append(A[7])
- if 'I' in json_string:
- answer.append(A[8])
- if 'J' in json_string:
- answer.append(A[9])
- return answer
- def aifilter1_1(A, #options
- B, #data
- aiclient,
- qwclient,
- sfclient,
- dw):
- options=[]
- letters = "ABCDEFGHIJKLMN"
- for i in range(len(A)):
- options.append("给定选项" + letters[i]+",内容为"+A[i] )
- completion = aiclient.chat.completions.create(
- model="glm-4.5-air",
- #model="Qwen/Qwen3-8B",
- #model="ernie-speed-128k",
- messages=[
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": " 特殊处理要求一:去掉所有含有“干铺卷材”字样的选项"},
- {"role": "user", "content": " 特殊处理要求二:如果工作内容描述中没有明确提到玻纤网格布,则去掉所有含有“玻纤网格布”字样的选项"},
- {"role": "user", "content": " 特殊处理要求三:如果工作内容描述的是屋面刚性层,则去掉所有精确含有‘卷材’字样的选项"},
- {"role": "user", "content": " 重要提示:选项指的是给定的A、B、C之类的选项,不是指的工作内容中的可能的1、2、3这样罗列的特征"},
- {"role": "user", "content": " 重要提示:除特殊处理要求提及的内容外,不需考虑选项内容与工作内容是否符合,只需要根据特殊处理要求做出处理"},
- {"role": "user", "content": "问题描述: 给定一段工作内容: " + B['label'] + " " + B['mc'] + " " + B['tz'] + ",".join(options) + "。请根据处理要求做出处理,并返回结果,删除选项必须对应到明确的特殊处理要求,不要擅自删除选项。例如,如果处理完后剩余A,B,C三个选项,请返回[A,B,C]"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- #extra_body={"enable_thinking": True},
- #stream=True
- )
- #done_thinking = False
- #json_string=""
- #thinking_json_string=""
- #for chunk in completion:
- # thinking_chunk = chunk.choices[0].delta.reasoning_content
- # answer_chunk = chunk.choices[0].delta.content
- # if thinking_chunk != '':
- # thinking_json_string = thinking_json_string + thinking_chunk
- # elif answer_chunk != '':
- # if not done_thinking:
- # done_thinking = True
- # json_string = json_string + answer_chunk
- json_string = completion.choices[0].message.content
- #print(thinking_json_string)
- print(json_string)
- if len([x for x in json_string if x != ',' and x != '[' and x != ']' and x != ' ' and (x < 'A' or x > 'M')]) < 5:
- answer=[]
- if 'A' in json_string and len(A) > 0:
- answer.append(A[0])
- if 'B' in json_string and len(A) > 1:
- answer.append(A[1])
- if 'C' in json_string and len(A) > 2:
- answer.append(A[2])
- if 'D' in json_string and len(A) > 3:
- answer.append(A[3])
- if 'E' in json_string and len(A) > 4:
- answer.append(A[4])
- if 'F' in json_string and len(A) > 5:
- answer.append(A[5])
- if 'G' in json_string and len(A) > 6:
- answer.append(A[6])
- if 'H' in json_string and len(A) > 7:
- answer.append(A[7])
- if 'I' in json_string and len(A) > 8:
- answer.append(A[8])
- if 'J' in json_string and len(A) > 9:
- answer.append(A[9])
- return answer
- completion = sfclient.chat.completions.create(
- model=simplemodel(),
- messages=xuanxiang(json_string),
- extra_body={"thinking": {"type": "disabled"}},
- #extra_body={"enable_thinking": False},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- answer=[]
- if 'A' in json_string:
- answer.append(A[0])
- if 'B' in json_string:
- answer.append(A[1])
- if 'C' in json_string:
- answer.append(A[2])
- if 'D' in json_string:
- answer.append(A[3])
- if 'E' in json_string:
- answer.append(A[4])
- if 'F' in json_string:
- answer.append(A[5])
- if 'G' in json_string:
- answer.append(A[6])
- if 'H' in json_string:
- answer.append(A[7])
- if 'I' in json_string:
- answer.append(A[8])
- if 'J' in json_string:
- answer.append(A[9])
- return answer
- def aifilter1_2(A, #options
- B, #data
- aiclient,
- qwclient,
- sfclient,
- dw):
- options=[]
- letters = "ABCDEFGHIJKLMN"
- for i in range(len(A)):
- options.append("给定选项" + letters[i]+",内容为"+A[i] )
- completion = aiclient.chat.completions.create(
- model="glm-4.5-air",
- #model="Qwen/Qwen3-8B",
- #model="ernie-speed-128k",
- messages=[
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": " 特殊处理要求一:如果工作内容描述没有明确的“加浆抹光”字样,则去掉所有含有“加浆抹光”字样的选项"},
- {"role": "user", "content": " 特殊处理要求二:如果工作内容描述没有单独的一道“素水泥浆”工序,则去掉所有含有“素水泥浆”字样的选项"},
- {"role": "user", "content": " 特殊处理要求三:如果选项中同时存在保温砂浆选项跟水泥砂浆选项,则去掉水泥砂浆的选项"},
- {"role": "user", "content": " 重要提示:选项指的是给定的A、B、C之类的选项,不是指的工作内容中的可能的1、2、3这样罗列的特征"},
- {"role": "user", "content": " 重要提示:除特殊处理要求提及的内容外,不需考虑选项内容与工作内容是否符合,只需要根据特殊处理要求做出处理"},
- {"role": "user", "content": "问题描述: 给定一段工作内容: " + B['label'] + " " + B['mc'] + " " + B['tz'] + ",".join(options) + "。请根据处理要求做出处理,并返回结果,删除选项必须对应到明确的特殊处理要求,不要擅自删除选项。例如,如果处理完后剩余A,B,C三个选项,请返回[A,B,C]"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- #extra_body={"enable_thinking": True},
- #stream=True
- )
- #done_thinking = False
- #json_string=""
- #thinking_json_string=""
- #for chunk in completion:
- # thinking_chunk = chunk.choices[0].delta.reasoning_content
- # answer_chunk = chunk.choices[0].delta.content
- # if thinking_chunk != '':
- # thinking_json_string = thinking_json_string + thinking_chunk
- # elif answer_chunk != '':
- # if not done_thinking:
- # done_thinking = True
- # json_string = json_string + answer_chunk
- json_string = completion.choices[0].message.content
- #print(thinking_json_string)
- print(json_string)
- if len([x for x in json_string if x != ',' and x != '[' and x != ']' and x != ' ' and (x < 'A' or x > 'M')]) < 5:
- answer=[]
- if 'A' in json_string and len(A) > 0:
- answer.append(A[0])
- if 'B' in json_string and len(A) > 1:
- answer.append(A[1])
- if 'C' in json_string and len(A) > 2:
- answer.append(A[2])
- if 'D' in json_string and len(A) > 3:
- answer.append(A[3])
- if 'E' in json_string and len(A) > 4:
- answer.append(A[4])
- if 'F' in json_string and len(A) > 5:
- answer.append(A[5])
- if 'G' in json_string and len(A) > 6:
- answer.append(A[6])
- if 'H' in json_string and len(A) > 7:
- answer.append(A[7])
- if 'I' in json_string and len(A) > 8:
- answer.append(A[8])
- if 'J' in json_string and len(A) > 9:
- answer.append(A[9])
- return answer
- completion = sfclient.chat.completions.create(
- model=simplemodel(),
- messages=xuanxiang(json_string),
- extra_body={"thinking": {"type": "disabled"}},
- #extra_body={"enable_thinking": False},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- answer=[]
- if 'A' in json_string:
- answer.append(A[0])
- if 'B' in json_string:
- answer.append(A[1])
- if 'C' in json_string:
- answer.append(A[2])
- if 'D' in json_string:
- answer.append(A[3])
- if 'E' in json_string:
- answer.append(A[4])
- if 'F' in json_string:
- answer.append(A[5])
- if 'G' in json_string:
- answer.append(A[6])
- if 'H' in json_string:
- answer.append(A[7])
- if 'I' in json_string:
- answer.append(A[8])
- if 'J' in json_string:
- answer.append(A[9])
- return answer
- def aifilter2(A, #options
- B, #data
- aiclient,
- qwclient,
- sfclient,
- dw):
- hit_wumian = False
- for entry in A:
- if entry in obj['wumian']:
- hit_wumian=True
- hit_loumian = False
- loumian_entry = ''
- for entry in A:
- if entry in obj['loumian']:
- hit_loumian=True
- loumian_entry = entry
- if hit_wumian and hit_loumian:
- return [x for x in A if x != loumian_entry]
- return A
- def postprocess0109(selected, data, aiclient, qwclient, sfclient, label_name, name_dw):
- juancai = [x for x in selected if 'SBS改性沥青防水卷材' in x or 'APP改性沥青防水卷材' in x]
- no_juancai = [x for x in selected if x not in juancai]
- group_juancai = [
- [name_label['10-30'],name_label['10-31']],
- [name_label['10-32'],name_label['10-33']],
- [name_label['10-34'],name_label['10-35']],
- [name_label['10-36'],name_label['10-37']],
- [name_label['10-38'],name_label['10-39']],
- [name_label['10-40'],name_label['10-41']],
- [name_label['10-42'],name_label['10-43']],
- [name_label['10-44'],name_label['10-45']],
- ]
- if len(juancai) > 0:
- hit_group=[]
- for entry in group_juancai:
- if juancai[0] in entry:
- hit_group=entry
- shuang = shuangceng(data,aiclient,sfclient)
- if shuang:
- selected = no_juancai + [hit_group[1]]
- else:
- selected = no_juancai + [hit_group[0]]
-
- if len([x for x in selected if '屋面找平层' in x and '细石混凝土' in x]) > 0:
- zhaoping = zhaopingceng(data,aiclient,sfclient)
- if not zhaoping:
- selected = [x for x in selected if not ('屋面找平层' in x and '细石混凝土' in x)]
- prime = aifilter1_1(selected, data, aiclient, qwclient, sfclient, name_dw)
- prime = aifilter1_2(prime, data, aiclient, qwclient, sfclient, name_dw)
- if data['bianma'].startswith("010902") and '高聚物' in data['tz'] and '改性沥青防水涂料' in data['tz']:##屋面防水
- if '第十章 屋面及防水工程 10.2 平面立面及其它防水 10.2.1 涂刷油类 水泥基渗透结晶 防水材料 二~三遍(厚2mm)' not in prime:
- prime.append('第十章 屋面及防水工程 10.2 平面立面及其它防水 10.2.1 涂刷油类 水泥基渗透结晶 防水材料 二~三遍(厚2mm)') ##需要换
- if data['bianma'].startswith("010902") and '非固化' in data['tz'] and '沥青防水涂料' in data['tz']:##屋面防水
- if '第十章 屋面及防水工程 10.2 平面立面及其它防水 10.2.1 涂刷油类 水泥基渗透结晶 防水材料 二~三遍(厚2mm)' not in prime:
- prime.append('第十章 屋面及防水工程 10.2 平面立面及其它防水 10.2.1 涂刷油类 水泥基渗透结晶 防水材料 二~三遍(厚2mm)') ##需要换
- prime = aifilter2(prime, data, aiclient, qwclient, sfclient, name_dw)##找平层去重
- prime = aifilter4(prime, data, aiclient, qwclient, sfclient, name_dw)##沥青去重
- if data['bianma'].startswith("010902") and '保护层' in data['tz']:##屋面防水保护层
- l = len([x for x in prime if '刚性防水屋面' in x])
- if l==0:
- answer = aifilter3(prime, data, aiclient, qwclient, sfclient, name_dw)
- prime.append(answer[0])
- if '南通补充定额 南通补充定额2016 第十章 屋面及防水工程 干铺法施工水泥彩瓦屋面(砼屋面板上钉钢挂瓦条、顺水条)' in prime:
- prime.append('南通补充定额 南通补充定额2016 第十章 屋面及防水工程 干铺法施工水泥彩瓦屋面(铺瓦)')
- return prime
|