| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- import time
- from config import simplemodel
- from menchuangfallback import menchuangfallback
- example1='''
- 1、包水管 做法详见图纸设计及相关图集规范
- 2、5#镀锌角钢基架
- 3、水管外包吸音材料
- 4、水泥纤维板
- '''
- answer_1='''
- {'面层': '水泥纤维板'}
- '''
- example2='''
- 1、一层大厅消火栓处,做法详见图纸设计及相关图集规范
- 2、石膏板、阻燃基层板、40*20*3镀锌方通龙骨、金属转轴等
- '''
- answer_2='''
- {'面层': '石膏板'}
- '''
- example3='''
- 1、不锈钢饰面 做法详见图纸设计及相关图集规范
- 2、1.5mm厚不锈钢面层
- 3、阻燃板基层,木龙骨找平阻燃处理
- '''
- answer_3='''
- {'面层': '1.5mm厚不锈钢面层'}
- '''
- def extra(
- data, #data
- aiclient,
- qwclient,
- sfclient,
- menchuang_collection,
- model,
- qita_collection,
- ):
- if '高强螺栓' in data['mc']:
- return '高强螺栓'
- if data['bianma'].startswith("0108"):
- sentence=["特征描述:" + data['mc'] + "\n" + data['tz']]
- embeddings = model.encode(sentence)
- result = menchuang_collection.query(query_embeddings=embeddings, n_results=10)
- print(result['documents'][0])
- l = len([x for x in result['distances'][0] if x < 0.5])
- if l < 2:
- l = 2
- completion = aiclient.chat.completions.create(
- model="glm-4.5-flash",
- messages=[
- {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"},
- {"role": "user", "content": "特征描述往往比较具体,工作内容是对特征描述的主要关键的总结提炼。以下是一些特征描述以及对应的提炼的工作内容的例子。" + '\n\n'.join(result['documents'][0][:l]) + "给定一段特征描述,内容为" + data['mc'] +data['tz'] + "。请参照示例,给出提炼的工作内容. 注意,不需要输出特征描述,仅输出工作内容"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- answers = json_string.split("\n")
- answers = [x for x in answers if ':' in x ]
- answer2 = answers[0].split(":")[1].replace(" ", "")
- return answer2
- if data['bianma'].startswith("0115"):
- sentence=["特征描述:" + data['mc'] + "\n" + data['tz']]
- embeddings = model.encode(sentence)
- result = qita_collection.query(query_embeddings=embeddings, n_results=10)
- print(result['documents'][0])
- l = len([x for x in result['distances'][0] if x < 0.5])
- if l < 2:
- l = 2
- completion = aiclient.chat.completions.create(
- model="glm-4.5-flash",
- messages=[
- {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"},
- {"role": "user", "content": "特征描述往往比较具体,工作内容是对特征描述的主要关键的总结提炼。以下是一些特征描述以及对应的提炼的工作内容的例子。" + '\n\n'.join(result['documents'][0][:l]) + "给定一段特征描述,内容为" + data['mc'] +data['tz'] + "。请参照示例,给出提炼的工作内容(提炼的工作内容中不得出现类似详见图纸、图集的表述). 注意,不需要输出特征描述,仅输出工作内容"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- answers = json_string.split("\n")
- answers = [x for x in answers if ':' in x ]
- answer2 = answers[0].split(":")[1].replace(" ", "")
- return answer2
- if data['bianma'].startswith("011207") or data['bianma'].startswith('011208'):
- completion = aiclient.chat.completions.create(
- model="glm-4.5-air",
- messages=[
- {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"},
- {"role": "user", "content": "墙柱面装饰板工程往往由多道工序组成,包括底层龙骨,附着于龙骨上的基层板、吸音棉、阻燃板等,以及作为饰面的面层板。现在要求你从给定的工作内容描述中抽取出面层的描述。举个例子,给定工作内容:"+example1+"\n你应该返回:"+answer_1+"\n再举个例子,给定工作内容:"+example2+"\n你应该返回:"+answer_2+"\n再举个例子,给定工作内容:"+example3+"\n你应该返回:"+answer_3+"\n现在给定工作内容:"+data['mc']+" "+data['tz']+"\n请给出你的答案"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- answers = json_string.split("\n")
- answers = [x for x in answers if ':' in x ]
- answer2 = answers[0].split(":")[1].replace(" ", "")
- return answer2
- completion = aiclient.chat.completions.create(
- model="glm-4.5-air",
- messages=[
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": " 背景知识:已知预应力高强混凝土管桩(PHC)代号定义为PHC-AAA(BB)CC-DDD-E1,E2,E3,E4,其中AAA代表管桩外径,BB代表管桩壁厚,CC表示型号,DDD表示混凝土强度等级,E1/E2/E3/E4表示分段桩长。例如,PHC-500(125)-AB-C80-9,7 表示外径500mm,壁厚125mm,型号AB,混凝土强度C80, 分段桩长分别为9米和7米,总桩长16米,施工时需要将两个分段接桩"},
- {"role": "user", "content": "问题描述: 给定一段工作内容描述,内容为" + data['mc'] +data['tz'] + "。请判断内容中是否包含桩的代号,如果没有,请输出“无”,如果有,请输出代号"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- )
- json_string = completion.choices[0].message.content
- completion = aiclient.chat.completions.create(
- model="glm-4.5-flash",
- messages=[
- {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"},
- {"role": "user", "content": " 给你一段文字如下, " + json_string + ",其中给出了一个代号作为答案,请将该最终答案输出"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- )
- json_string = completion.choices[0].message.content
-
- answers = json_string.split("\n")
- answers = [x for x in answers if ':' in x ]
- answers = [x for x in answers if not 'true' in x]
- answers = [x for x in answers if not '是' in x]
- print(answers)
- if len(answers) == 0:
- return "无"
- answer2 = answers[0].split(":")[1].replace(" ", "")
- return answer2
- def need_extra(
- data, #data
- aiclient,
- qwclient,
- sfclient,
- result, name_label):
- if data['bianma'].startswith('011207') or data['bianma'].startswith('011208'):
- result = [x[0].replace('换', '') for x in result]
- result = [name_label[x] for x in result]
- if len([x for x in result if '铝板' in x or '铝单板' in x]) > 0:
- return False
- left = [x.replace('在木龙骨', '') for x in result ]
- left = [x.replace('在龙骨', '') for x in left ]
- left = [x for x in left if '龙骨' not in x]
- left = [x for x in left if '细木工板基层' not in x]
- left = [x for x in left if '吸音' not in x]
- if len(left) == 0:
- return True
- return False
- if data['bianma'].startswith("0108") and len(result) == 0:
- return True
- if data['bianma'].startswith("0115") and len(result) == 0:
- return True
- if '高强螺栓' in data['mc']:
- return True
- time.sleep(1)
- completion = qwclient.chat.completions.create(
- model="Qwen/Qwen3-32B",
- #model="THUDM/GLM-4-9B-0414",
- messages=[
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": "问题描述: 给定一段工作内容描述,内容为" + data['mc'] +data['tz'] + "。请判断内容是否属于打桩、压桩。请回答是或者否"},
- ],
- #extra_body={"thinking": {"type": "disabled"}},
- extra_body={"enable_thinking": False},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- if "是" in json_string:
- return True
- else:
- return False
|