| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- import time
- from menchuangfallback import menchuangfallback
- def extra(
- data, #data
- aiclient,
- qwclient,
- menchuang_collection,
- model):
- if data['bianma'].startswith("0108"):
- sentence=["特征描述:" + data['mc'] + "\n" + data['tz']]
- embeddings = model.encode(sentence)
- result = menchuang_collection.query(query_embeddings=embeddings, n_results=10)
- print(result['documents'][0])
- l = len([x for x in result['distances'][0] if x < 0.5])
- if l < 2:
- l = 2
- completion = aiclient.chat.completions.create(
- model="glm-4.5-flash",
- messages=[
- {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"},
- {"role": "user", "content": "特征描述往往比较具体,工作内容是对特征描述的主要关键的总结提炼。以下是一些特征描述以及对应的提炼的工作内容的例子。" + '\n\n'.join(result['documents'][0][:l]) + "给定一段特征描述,内容为" + data['mc'] +data['tz'] + "。请参照示例,给出提炼的工作内容. 注意,不需要输出特征描述,仅输出工作内容"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- answers = json_string.split("\n")
- answers = [x for x in answers if ':' in x ]
- answer2 = answers[0].split(":")[1].replace(" ", "")
- return answer2
- completion = aiclient.chat.completions.create(
- model="glm-4.5-flash",
- messages=[
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": " 背景知识:已知预应力高强混凝土管桩(PHC)代号定义为PHC-AAA(BB)CC-DDD-E1,E2,E3,E4,其中AAA代表管桩外径,BB代表管桩壁厚,CC表示型号,DDD表示混凝土强度等级,E1/E2/E3/E4表示分段桩长。例如,PHC-500(125)-AB-C80-9,7 表示外径500mm,壁厚125mm,型号AB,混凝土强度C80, 分段桩长分别为9米和7米,总桩长16米,施工时需要将两个分段接桩"},
- {"role": "user", "content": "问题描述: 给定一段工作内容描述,内容为" + data['mc'] +data['tz'] + "。请判断内容中是否包含桩的代号,如果没有,请输出“无”,如果有,请输出代号"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- )
- json_string = completion.choices[0].message.content
- completion = aiclient.chat.completions.create(
- model="glm-4.5-flash",
- messages=[
- {"role": "system", "content": "You are a helpful assistant.请将最终答案以JSON格式输出"},
- {"role": "user", "content": " 给你一段文字如下, " + json_string + ",其中给出了一个代号作为答案,请将该最终答案输出"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- )
- json_string = completion.choices[0].message.content
-
- answers = json_string.split("\n")
- answers = [x for x in answers if ':' in x ]
- answers = [x for x in answers if not 'true' in x]
- answers = [x for x in answers if not '是' in x]
- print(answers)
- if len(answers) == 0:
- return "无"
- answer2 = answers[0].split(":")[1].replace(" ", "")
- return answer2
- def need_extra(
- data, #data
- aiclient,
- qwclient,
- result):
- if data['bianma'].startswith("0108") and len(result) == 0:
- return True
- time.sleep(1)
- completion = qwclient.chat.completions.create(
- model="ZhipuAI/GLM-4.6",
- #model="glm-4.5-flash",
- messages=[
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": "问题描述: 给定一段工作内容描述,内容为" + data['mc'] +data['tz'] + "。请判断内容是否属于打桩、压桩。请回答是或者否"},
- ],
- extra_body={"thinking": {"type": "disabled"}},
- )
- json_string = completion.choices[0].message.content
- print(json_string)
- if "是" in json_string:
- return True
- else:
- return False
|