import pymongo import pandas import json from pymongo import MongoClient import os import re import time from openai import OpenAI import numpy as np client = MongoClient() db = client["dinge"] collection = db["de-collection"] from subdir import service ##print(collection.find_one({"DEBH": "3-94"})) client_ = OpenAI( api_key='sk-7c7be9c8dda84cb98901c98e0c74a2d8', # 如果您没有配置环境变量,请在此处用您的API Key进行替换 base_url="https://dashscope.aliyuncs.com/compatible-mode/v1" # 百炼服务的base_url ) array1 = np.array([]) array2 = np.array([]) array3 = np.array([]) array4 = np.zeros((1,1024)) count = 0 qd = pandas.read_csv("JD_QingDanXM_parent.csv") for i in range(len(qd)): row = qd.iloc[i] if row['fbcch'].item() == 4: array1 = np.append(array1, row['qdbh']) array2 = np.append(array2, row['xmmc']) array3 = np.append(array3, row['parent']) completion = client_.embeddings.create( model="text-embedding-v4", input='类别: ' + row['parent'] + ", 内容:" + row["xmmc"], dimensions=1024, # 指定向量维度(仅 text-embedding-v3及 text-embedding-v4支持该参数) encoding_format="float" ) ##print(completion.data[0].embedding) array4 = np.vstack((array4, [completion.data[0].embedding])) count = count + 1 print(count) time.sleep(0.5) con = np.stack((array1, array2, array3)) con = np.transpose(con) np.save('qd_content.npy', con) np.save('qd_embedding.npy', array4[1:])